This documentation is automatically generated by online-judge-tools/verification-helper
#include "Math/twosquare.hpp"
#pragma once
#include "Math/primitive.hpp"
#include "Math/gaussian.hpp"
#include "Math/pollard.hpp"
vector<pair<ll, ll>> RepresentTwoSquare(ll n) {
auto find = [&](ll p) -> Gauss<ll> {
assert(p % 4 == 1);
ll g = 1, x = -1;
for (;;) {
g++;
x = mpow(g, (p - 1) / 4, p);
if ((__int128_t(x) * x) % p == p - 1)
break;
}
Gauss<ll> a(p, 0), b(x, 1);
a = gcd(a, b);
assert(a.norm() == p);
return a;
};
auto subtask = [&](ll p, int e) -> vector<Gauss<ll>> {
if (p == 2) {
Gauss<ll> ret(1, 0), b(1, 1);
rep(_, 0, e) ret *= b;
return {ret};
} else if (p % 4 == 1) {
auto base = find(p);
vector<Gauss<ll>> pws(e + 1), ret(e + 1);
pws[0] = Gauss<ll>(1, 0);
rep(i, 0, e) pws[i + 1] = pws[i] * base;
rep(i, 0, e + 1) ret[i] = pws[i] * pws[e - i].conj();
return ret;
} else {
if (e & 1)
return {};
ll q = 1;
rep(_, 0, e / 2) q *= p;
return {Gauss<ll>(q, 0)};
}
};
if (n == 0) {
return {{0, 0}};
}
auto ps = Pollard(n);
map<ll, int> pe;
for (auto &p : ps)
pe[p]++;
vector<Gauss<ll>> ret;
ret.push_back(Gauss<ll>(1, 0));
for (auto &[p, e] : pe) {
auto add = subtask(p, e);
vector<Gauss<ll>> nxt;
for (auto &x : ret) {
for (auto &y : add) {
nxt.push_back(x * y);
}
}
swap(ret, nxt);
}
vector<pair<ll, ll>> out;
for (auto x : ret) {
rep(_, 0, 4) {
swap(x.x, x.y);
x.x *= -1;
if (x.x >= 0 and x.y >= 0) {
out.push_back({x.x, x.y});
}
}
}
return out;
}
/**
* @brief Represent A Number As Two Square Sum
*/
#line 2 "Math/fastdiv.hpp"
struct FastDiv {
using u64 = uint64_t;
using u128 = __uint128_t;
constexpr FastDiv() : m(), s(), x() {}
constexpr FastDiv(int _m)
: m(_m), s(__lg(m - 1)), x(((u128(1) << (s + 64)) + m - 1) / m) {}
constexpr int get() {
return m;
}
constexpr friend u64 operator/(u64 n, const FastDiv &d) {
return (u128(n) * d.x >> d.s) >> 64;
}
constexpr friend int operator%(u64 n, const FastDiv &d) {
return n - n / d * d.m;
}
constexpr pair<u64, int> divmod(u64 n) const {
u64 q = n / (*this);
return {q, n - q * m};
}
int m, s;
u64 x;
};
struct FastDiv64 {
using u64 = uint64_t;
using u128 = __uint128_t;
u128 mod, mh, ml;
explicit FastDiv64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0))
++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const {
return mod;
}
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) {
return modulo(u128(a) * b);
}
};
/**
* @brief Fast Division
*/
#line 2 "Math/miller.hpp"
struct m64 {
using i64 = int64_t;
using u64 = uint64_t;
using u128 = __uint128_t;
static u64 mod;
static u64 r;
static u64 n2;
static u64 get_r() {
u64 ret = mod;
rep(_,0,5) ret *= 2 - mod * ret;
return ret;
}
static void set_mod(u64 m) {
assert(m < (1LL << 62));
assert((m & 1) == 1);
mod = m;
n2 = -u128(m) % m;
r = get_r();
assert(r * mod == 1);
}
static u64 get_mod() { return mod; }
u64 a;
m64() : a(0) {}
m64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){};
static u64 reduce(const u128 &b) {
return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
}
u64 get() const {
u64 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
m64 &operator*=(const m64 &b) {
a = reduce(u128(a) * b.a);
return *this;
}
m64 operator*(const m64 &b) const { return m64(*this) *= b; }
bool operator==(const m64 &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const m64 &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
m64 pow(u128 n) const {
m64 ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
};
typename m64::u64 m64::mod, m64::r, m64::n2;
bool Miller(ll n){
if(n<2 or (n&1)==0)return (n==2);
m64::set_mod(n);
ll d=n-1; while((d&1)==0)d>>=1;
vector<ll> seeds;
if(n<(1<<30))seeds={2, 7, 61};
else seeds={2, 325, 9375, 28178, 450775, 9780504};
for(auto& x:seeds){
if(n<=x)break;
ll t=d;
m64 y=m64(x).pow(t);
while(t!=n-1 and y!=1 and y!=n-1){
y*=y;
t<<=1;
}
if(y!=n-1 and (t&1)==0)return 0;
} return 1;
}
/**
* @brief Miller-Rabin
*/
#line 2 "Utility/random.hpp"
namespace Random {
mt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());
using u64 = unsigned long long;
u64 get() {
return randgen();
}
template <typename T> T get(T L) { // [0,L]
return get() % (L + 1);
}
template <typename T> T get(T L, T R) { // [L,R]
return get(R - L) + L;
}
double uniform() {
return double(get(1000000000)) / 1000000000;
}
string str(int n) {
string ret;
rep(i, 0, n) ret += get('a', 'z');
return ret;
}
template <typename Iter> void shuffle(Iter first, Iter last) {
if (first == last)
return;
int len = 1;
for (auto it = first + 1; it != last; it++) {
len++;
int j = get(0, len - 1);
if (j != len - 1)
iter_swap(it, first + j);
}
}
template <typename T> vector<T> select(int n, T L, T R) { // [L,R]
if (n * 2 >= R - L + 1) {
vector<T> ret(R - L + 1);
iota(ALL(ret), L);
shuffle(ALL(ret));
ret.resize(n);
return ret;
} else {
unordered_set<T> used;
vector<T> ret;
while (SZ(used) < n) {
T x = get(L, R);
if (!used.count(x)) {
used.insert(x);
ret.push_back(x);
}
}
return ret;
}
}
void relabel(int n, vector<pair<int, int>> &es) {
shuffle(ALL(es));
vector<int> ord(n);
iota(ALL(ord), 0);
shuffle(ALL(ord));
for (auto &[u, v] : es)
u = ord[u], v = ord[v];
}
template <bool directed, bool simple> vector<pair<int, int>> genGraph(int n) {
vector<pair<int, int>> cand, es;
rep(u, 0, n) rep(v, 0, n) {
if (simple and u == v)
continue;
if (!directed and u > v)
continue;
cand.push_back({u, v});
}
int m = get(SZ(cand));
vector<int> ord;
if (simple)
ord = select(m, 0, SZ(cand) - 1);
else {
rep(_, 0, m) ord.push_back(get(SZ(cand) - 1));
}
for (auto &i : ord)
es.push_back(cand[i]);
relabel(n, es);
return es;
}
vector<pair<int, int>> genTree(int n) {
vector<pair<int, int>> es;
rep(i, 1, n) es.push_back({get(i - 1), i});
relabel(n, es);
return es;
}
}; // namespace Random
/**
* @brief Random
*/
#line 4 "Math/pollard.hpp"
vector<ll> Pollard(ll n) {
if (n <= 1)
return {};
if (Miller(n))
return {n};
if ((n & 1) == 0) {
vector<ll> v = Pollard(n >> 1);
v.push_back(2);
return v;
}
for (ll x = 2, y = 2, d;;) {
ll c = Random::get(2LL, n - 1);
do {
x = (__int128_t(x) * x + c) % n;
y = (__int128_t(y) * y + c) % n;
y = (__int128_t(y) * y + c) % n;
d = __gcd(x - y + n, n);
} while (d == 1);
if (d < n) {
vector<ll> lb = Pollard(d), rb = Pollard(n / d);
lb.insert(lb.end(), ALL(rb));
return lb;
}
}
}
/**
* @brief Pollard-Rho
*/
#line 4 "Math/primitive.hpp"
ll mpow(ll a, ll t, ll m) {
ll res = 1;
FastDiv64 im(m);
while (t) {
if (t & 1)
res = im.modulo(__int128_t(res) * a);
a = im.modulo(__int128_t(a) * a);
t >>= 1;
}
return res;
}
ll minv(ll a, ll m) {
ll b = m, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u = (u % m + m) % m;
return u;
}
ll getPrimitiveRoot(ll p) {
vector<ll> ps = Pollard(p - 1);
sort(ALL(ps));
rep(x, 1, inf) {
for (auto &q : ps) {
if (mpow(x, (p - 1) / q, p) == 1)
goto fail;
}
return x;
fail:;
}
assert(0);
}
ll extgcd(ll a, ll b, ll &p, ll &q) {
if (b == 0) {
p = 1;
q = 0;
return a;
}
ll d = extgcd(b, a % b, q, p);
q -= a / b * p;
return d;
}
pair<ll, ll> crt(const vector<ll> &vs, const vector<ll> &ms) {
ll V = vs[0], M = ms[0];
rep(i, 1, vs.size()) {
ll p, q, v = vs[i], m = ms[i];
if (M < m)
swap(M, m), swap(V, v);
ll d = extgcd(M, m, p, q);
if ((v - V) % d != 0)
return {0, -1};
ll md = m / d, tmp = (v - V) / d % md * p % md;
V += M * tmp;
M *= md;
}
V = (V % M + M) % M;
return {V, M};
}
ll ModLog(ll a, ll b, ll p) {
ll g = 1;
for (ll t = p; t; t >>= 1)
g = g * a % p;
g = __gcd(g, p);
ll t = 1, c = 0;
for (; t % g; c++) {
if (t == b)
return c;
t = t * a % p;
}
if (b % g)
return -1;
t /= g, b /= g;
ll n = p / g, h = 0, gs = 1;
for (; h * h < n; h++)
gs = gs * a % n;
unordered_map<ll, ll> bs;
for (ll s = 0, e = b; s < h; bs[e] = ++s)
e = e * a % n;
for (ll s = 0, e = t; s < n;) {
e = e * gs % n, s += h;
if (bs.count(e)) {
return c + s - bs[e];
}
}
return -1;
}
ll mod_root(ll k, ll a, ll m) {
if (a == 0)
return k ? 0 : -1;
if (m == 2)
return a & 1;
k %= m - 1;
ll g = gcd(k, m - 1);
if (mpow(a, (m - 1) / g, m) != 1)
return -1;
a = mpow(a, minv(k / g, (m - 1) / g), m);
FastDiv im(m);
auto _subroot = [&](ll p, int e, ll a) -> ll { // x^(p^e)==a(mod m)
ll q = m - 1;
int s = 0;
while (q % p == 0) {
q /= p;
s++;
}
int d = s - e;
ll pe = mpow(p, e, m),
res = mpow(a, ((pe - 1) * minv(q, pe) % pe * q + 1) / pe, m), c = 1;
while (mpow(c, (m - 1) / p, m) == 1)
c++;
c = mpow(c, q, m);
map<ll, ll> mp;
ll v = 1, block = sqrt(d * p) + 1,
bs = mpow(c, mpow(p, s - 1, m - 1) * block % (m - 1), m);
rep(i, 0, block + 1) mp[v] = i, v = v * bs % im;
ll gs = minv(mpow(c, mpow(p, s - 1, m - 1), m), m);
rep(i, 0, d) {
ll err = a * minv(mpow(res, pe, m), m) % im;
ll pos = mpow(err, mpow(p, d - 1 - i, m - 1), m);
rep(j, 0, block + 1) {
if (mp.count(pos)) {
res = res *
mpow(c,
(block * mp[pos] + j) * mpow(p, i, m - 1) %
(m - 1),
m) %
im;
break;
}
pos = pos * gs % im;
}
}
return res;
};
for (ll d = 2; d * d <= g; d++)
if (g % d == 0) {
int sz = 0;
while (g % d == 0) {
g /= d;
sz++;
}
a = _subroot(d, sz, a);
}
if (g > 1)
a = _subroot(g, 1, a);
return a;
}
ull floor_root(ull a, ull k) {
if (a <= 1 or k == 1)
return a;
if (k >= 64)
return 1;
if (k == 2)
return sqrtl(a);
constexpr ull LIM = -1;
if (a == LIM)
a--;
auto mul = [&](ull &x, const ull &y) {
if (x <= LIM / y)
x *= y;
else
x = LIM;
};
auto pw = [&](ull x, ull t) -> ull {
ull y = 1;
while (t) {
if (t & 1)
mul(y, x);
mul(x, x);
t >>= 1;
}
return y;
};
ull ret = (k == 3 ? cbrt(a) - 1 : pow(a, nextafter(1 / double(k), 0)));
while (pw(ret + 1, k) <= a)
ret++;
return ret;
}
/**
* @brief Primitive Function
*/
#line 2 "Math/gaussian.hpp"
template <typename T> struct Gauss {
T x, y;
Gauss() {}
Gauss(T _x, T _y) : x(_x), y(_y) {}
T norm() const {
return x * x + y * y;
}
Gauss conj() const {
return Gauss(x, -y);
}
Gauss operator-() const {
return Gauss(-x, -y);
}
Gauss pow(ll n) const {
assert(n >= 0);
Gauss ret(1), mul(*this);
while (n) {
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
Gauss &operator+=(const Gauss &a) {
x += a.x, y += a.y;
return *this;
}
Gauss &operator-=(const Gauss &a) {
x -= a.x, y -= a.y;
return *this;
}
Gauss &operator*=(const Gauss &a) {
T nx = x * a.x - y * a.y, ny = x * a.y + y * a.x;
x = nx, y = ny;
return *this;
}
Gauss &operator/=(const Gauss &a) {
(*this) *= a.conj();
T n = a.norm();
x = floor(x + n / 2, n), y = floor(y + n / 2, n);
return *this;
}
Gauss &operator%=(const Gauss &a) {
(*this) -= (Gauss(*this) / a) * a;
return *this;
}
Gauss operator+(const Gauss &a) const {
return Gauss(*this) += a;
}
Gauss operator-(const Gauss &a) const {
return Gauss(*this) -= a;
}
Gauss operator*(const Gauss &a) const {
return Gauss(*this) *= a;
}
Gauss operator/(const Gauss &a) const {
return Gauss(*this) /= a;
}
Gauss operator%(const Gauss &a) const {
return Gauss(*this) %= a;
}
bool operator==(const Gauss &a) {
return (x == a.x and y == a.y);
}
bool operator!=(const Gauss &a) {
return (x != a.x or y != a.y);
}
};
template <typename T> Gauss<T> gcd(Gauss<T> a, Gauss<T> b) {
while (b != Gauss<T>(0, 0)) {
a %= b;
swap(a, b);
}
return a;
}
/**
* @brief Gaussaussian Integer
*/
#line 5 "Math/twosquare.hpp"
vector<pair<ll, ll>> RepresentTwoSquare(ll n) {
auto find = [&](ll p) -> Gauss<ll> {
assert(p % 4 == 1);
ll g = 1, x = -1;
for (;;) {
g++;
x = mpow(g, (p - 1) / 4, p);
if ((__int128_t(x) * x) % p == p - 1)
break;
}
Gauss<ll> a(p, 0), b(x, 1);
a = gcd(a, b);
assert(a.norm() == p);
return a;
};
auto subtask = [&](ll p, int e) -> vector<Gauss<ll>> {
if (p == 2) {
Gauss<ll> ret(1, 0), b(1, 1);
rep(_, 0, e) ret *= b;
return {ret};
} else if (p % 4 == 1) {
auto base = find(p);
vector<Gauss<ll>> pws(e + 1), ret(e + 1);
pws[0] = Gauss<ll>(1, 0);
rep(i, 0, e) pws[i + 1] = pws[i] * base;
rep(i, 0, e + 1) ret[i] = pws[i] * pws[e - i].conj();
return ret;
} else {
if (e & 1)
return {};
ll q = 1;
rep(_, 0, e / 2) q *= p;
return {Gauss<ll>(q, 0)};
}
};
if (n == 0) {
return {{0, 0}};
}
auto ps = Pollard(n);
map<ll, int> pe;
for (auto &p : ps)
pe[p]++;
vector<Gauss<ll>> ret;
ret.push_back(Gauss<ll>(1, 0));
for (auto &[p, e] : pe) {
auto add = subtask(p, e);
vector<Gauss<ll>> nxt;
for (auto &x : ret) {
for (auto &y : add) {
nxt.push_back(x * y);
}
}
swap(ret, nxt);
}
vector<pair<ll, ll>> out;
for (auto x : ret) {
rep(_, 0, 4) {
swap(x.x, x.y);
x.x *= -1;
if (x.x >= 0 and x.y >= 0) {
out.push_back({x.x, x.y});
}
}
}
return out;
}
/**
* @brief Represent A Number As Two Square Sum
*/